Stabilization of Hydrogen Radical Anions in Solid Hydrogen

Tsuneki Ichikawa,^{*,†} Hiroto Tachikawa,[†] Jun Kumagai,[‡] Takayuki Kumada,[‡] and Tetsuo Miyazaki^{‡,§}

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11, Japan, and Department of Applied Chemistry, School of Engineering, Nagoya University, Nagoya 464-01, Japan

Received: June 12, 1997; In Final Form: August 19, 1997[®]

The electron spin resonance g-factor of H_2^- in γ -irradiated crystalline H_2 was found to be not 2.003 but 2.0023. A novel model has been proposed for explaining the formation and stabilization of H_2^- in crystalline H_2 . The model assumes H_2^- to be located at the center of a cavity that has previously been occupied by a trapped electron. The excess electron of H_2^- is forced to be attached on one H_2 in the cavity due to strong repulsive interactions between the excess electron and H_2 molecules surrounding the cavity. A quantum-mechanical calculation shows that an electron trapped in the vacancy of crystalline H_2 automatically converts to H_2^- by drawing one of the surrounding H_2 molecules into the center of the vacancy.

Introduction

Although H_2^- and H_2^+ are the simplest molecular ions, because of their instability, the molecular properties of these ions have not been extensively studied. H_2^- may have two electrons in a bonding $1\sigma_g$ orbital and one electron in an antibonding $1\sigma_u$ orbital, so that it is expected to be stable. However, because of strong repulsive interactions among electrons, H_2 is highly electrorepulsive and H_2^- in the gas phase releases its excess electron within 10^{-14} s.^{1,2} Contrary to H_2^- , H_2^+ is stable and is detectable in the gas phase.^{3,4} However, in a condensed phase it reacts very rapidly with H_2 to convert to H_3^+ and $H_2^{-5,6}$

Recently Miyazaki et al. proved the presence of stable orthoand para- H_2^- in a γ -irradiated solid para- H_2 crystal.^{7,8} They succeeded in detecting the singlet electron spin resonance (ESR) line of ortho- H_2^- with the *g*-factor of ca. 2.003 and the triplet ESR lines of para- H_2^- with the hyperfine coupling constant of 20.3 mT, which is in good agreement with that predicted by Symons.⁹ The observed hyperfine coupling constant is smaller than a half of that of H (50.8 mT), which shows the expansion of 1s orbitals due to the excess charge of H_2^- .

Although the observed ESR hyperfine structure strongly suggests the formation of H_2^- , there are two pieces of evidence that do not support the presence of H_2^- . One is the discrepancy between the observed and the theoretical *g*-factors. The observed hyperfine coupling suggests that the unpaired electron of H_2^- is in a $1\sigma_u$ orbital composed of 1s-like atomic orbitals. The positive shift of the g-factor from that of the free electron (2.0023) indicates that the excited spin state inducing the positive shift is generated by the excitation of one electron from $1\sigma_g$ to $1\sigma_u$. However, since the σ states have no angular momentum, no spin-orbit coupling is expected by the excitation. The *g*-factor of H_2^- should therefore be very close to 2.0023. Recently Bruna et al. made an ab initio calculation on the ESR *g*-factors of free H_2^- and found a large discrepancy between the calculated and the observed g factors.¹⁰

Figure 1. Schematic representation of the process of H_2^- formation and stabilization in crystalline H_2 . A free electron generated by ionizing radiations is first trapped in a vacancy. One of the adjacent H_2 molecules the picks up the electron to convert to H_2^- .

The other difficulty is the stability of H_2^- . H_2^- embedded in crystalline H_2 as a substitutional-type impurity may give its excess electron to one of nearby H_2 molecules very quickly. The hopping rate of the excess electron and therefore the decay rate of H_2^- are expected to be very fast even when the electron is occasionally trapped on a H_2 molecule. The lifetime of $H_2^$ in neat parahydrogen at 4.2 K is, however as long as 10 h.¹¹

In this paper, we would like to report that the observed g-factor is not 2.003 but 2.0023, and to propose that the observed singlet and triplet lines are due to H_2^- , which is stabilized at the center of a cavity in crystalline H_2 due to very strong repulsive interactions between the excess electron of H_2^- and H_2 molecules surrounding the cavity.

Determination of the ESR g-Factor

The ESR g-factor of H_2^- in γ -irradiated parahydrogen at 4.2 K was determined with a X-band ESR spectrometer equipped with a calibrated Gauss meter and a microwave frequency meter. The obtained g-factor was 2.0023, which agreed well with the expected g-factor of H_2^- . The error in the previous measurement was found to arise mainly from the inaccuracy of the magnetic field.

Model and Calculation

Figure 1 shows our model on the formation and stabilization of H_2^- in crystalline H_2 . Crystalline H_2 generally contains many vacancies. Vacancies or cavities with enough potential depth and radius can trap free electrons to generate trapped electrons. The zero-point energy of trapped electrons, E_t , is derived from¹²

S1089-5639(97)01923-3 CCC: \$14.00 © 1997 American Chemical Society

[†] Hokkaido University.

[‡] Japan Atomic Energy Research Institute.

[§] Nagoya University.

[®] Abstract published in Advance ACS Abstracts, September 15, 1997.

7316 J. Phys. Chem. A, Vol. 101, No. 40, 1997

$$\sqrt{V_0 - E_t} = -\sqrt{U_p(r_c) + E_t} \cot\left[\sqrt{\frac{2m\{U_p(r_c) + E_t\}}{\hbar^2}}r_c\right]$$
(1)

where V_0 is the minimum energy of free electrons in a medium, r_c is the radius of a vacancy or cavity and is 0.218 nm for crystalline H₂, and $U_p(r_c)$ is the polarization potential arising from dipole interactions between the electron and the medium and is approximately given by

$$U_{\rm p}(r_{\rm c}) = \frac{e^2 (D_{\rm op} - 1)}{2 D_{\rm op} r_{\rm c}}$$
(2)

Here D_{op} is the optical dielectric constant of the medium and is 1.34 for crystalline H₂. The value of V_0 for liquid H₂ has been estimated by a photoelectron emission study to be larger than 2 eV.¹³ Assuming $V_0 = 2$ eV for crystalline H₂, the zero-point energy of a localized electron in a vacancy of crystalline H₂ is estimated to be 1.82 eV. Conversion of free electrons into trapped electrons, e_t^- , is therefore a spontaneous exothermic reaction.

The observed anionic specimen is, however, not e_t^- but H_2^- . H_2^- can be generated from e_t^- by transferring a H_2 molecule from the wall of the vacancy to the center of the resultant cavity. Although H_2^- in vacuum automatically dissociates into H_2 and a free electron, H_2^- in crystalline H_2 can be stabilized in the cavity due to very strong repulsive interaction between the excess electron of the anion and surrounding H_2 molecules. The heat of H_2^- formation, E_f , from e_t^- is defined as the difference of total energies between the $H_2 + e_t^-$ state and the trapped H_2^- state $H_{2,t}^-$, as

$$E_{\rm f} = E_{\rm H2,t^-} - (E_{\rm H2} + 1.82 \text{ eV})$$
 (3)

The total energy of $H_{2,t}^-$ depends on the potential curve. Assuming H_2^- to be trapped in a spherical cavity with a volume corresponding to two H_2 molecules, the potential energy for $H_{2,t}^-$ is estimated by a first-order perturbation method, as

$$U_{\rm H2,t^{-}}(R) = U_{\rm H2^{-}}(R) - \int_{0}^{r_{\rm c}} \psi(R,r) U_{\rm p}(r_{\rm c}) \,\psi(R,r) \,\mathrm{d}^{3}r + \int_{0}^{r_{\rm c}} \psi(R,r) V_{0} \psi(R,r) \,\mathrm{d}^{3}r$$
$$= U_{\rm H2^{-}}(R) - [U_{\rm p}(r_{\rm c}) + V_{0}]\rho(R,r_{\rm c}) + V_{0} \qquad (4)$$

Here *R* is the bond length of H_2^- , $r_c = 0.275$ nm is the radius of the cavity, $U_{H_2}(R)$ is the potential energy of H_2^- in vacuum, $\psi(R,r)$ is the wave function of the excess electron of H_2^- , and $\rho(R,r_c)$ is the density of the negative charge of H_2^- in the cavity.

The energies and the wave functions of H₂⁻ have been calculated quantum-mechanically by using several types of basis sets.¹⁴⁻²¹ One of the fundamental difficulties for the calculation is that the result strongly depends on the basis set. Since H₂ has negative electron affinity, the most stable state for H₂⁻ is obviously a ground-state neutral H₂ molecule with a groundstate free electron. For preventing the dissociation of H₂⁻ into H₂ and a free electron, it is necessary to eliminate a free electrontype basis set and to use only an atomic orbital-type basis set. This very artificial confinement of electrons around two protons inevitably causes a strong dependence of the calculated result on the basis set. The purpose of the present study is, however, not to calculate the correct energy of H2⁻ but to know whether H_2^- can possibly be trapped in crystalline H_2 . Selection of a basis set is not so critical for this purpose as long as a wave function obtained satisfies the criterion of excess electron localization on a H₂ molecule. Figure 2 shows the potential

Figure 2. Potential curves for free H_2^- and free H_2 + free electron with zero kinetic energy.

Figure 3. Fermi contact term and the density of the excess electron of free H_2^- , $\rho(R,r_c)$, within the radius of $r_c = 0.275$ nm.

curves of H₂ and H₂⁻ as calculated with the double substituted coupled cluster (CCD) method with the 6-311++G(3d,3p) basis set.²² The Fermi contact term and the value of $\rho(R,r_c)$ are shown in Figure 3 for representing the characteristics of the wave function of the excess electron of H2⁻. The Fermi term increases with R and approaches a plateau value of about a half of that of the H atom, which implies that H_2^- becomes $H^- +$ H at $R = \infty$. As shown in Figure 2, H_2^- is more stable than the H₂ + free electron state at $R = \infty$, because the H atom has an electron affinity of 0.754 eV.²³ The H^- + H state, however, has the highest potential energy. With decreasing R the H^- + H state gradually converts to the H_2 + free electron state, accompanying the expansion of the orbital of the excess electron. Although the most stable state of H_2^- is H_2 + free electron, the calculated potential energy of the most stable H_2^- is higher than that of H_2 + free electron. This is simply because the wave function of a free electron is not included in the ab initio calculation of H₂⁻.

Figure 4 compares the potential curves for $H_{2,t}^-$ and $H_2 + e_t^-$. The potential curve for $H_{2,t}^-$ was obtained by substituting the value of $\rho(R,r_c)$ in Figure 3 into eq 4. The potential curve for the $H_2 + e_t^-$ state was obtained simply by adding 1.82 eV to the potential energy of H_2 . It is evident from the figure that $H_{2,t}^-$ is potentially more stable than $H_2 + e_t^-$. Since the curvature of the potential energies near the equilibrium bond

Figure 4. Comparison of the potential curves of $H_2 + e_t^-$ (trapped electron) in a vacancy with a radius of 0.218 nm and $H_{2,t}^-$ (trapped H_2^-) in a cavity with a radius of 0.275 nm.

length is similar for H_2 and H_{2,t^-} , it is reasonable to assume that the zero-point vibrational and probably the rotational energies of H_2^- in the cavity are approximately the same as those of H_2 . The heat of H_{2,t^-} formation is then positive and the conversion of e_t^- to H_{2,t^-} becomes a spontaneous exothermic process.

Discussion

The simple quantum-mechanical calculation shows that $H_2^$ is generated and trapped in crystalline H_2 by the exothermic reaction of the trapped electron and H_2 . The actual heat of $H_{2,t}^$ formation is probably much higher than the calculated one, since the wave function used is not accurate enough for expressing the observed $H_{2,t}^-$ state. The observed Fermi contact term for $H_{2,t}^-$ is 20.3 mT, which indicates that the excess electron is mainly in the 1s orbitals of two H atoms. However the orbital used for the calculation of $H_{2,t}^-$ at the optimum configuration is not s-type, since the calculated Fermi term at the optimum configuration is zero. The heat of $H_{2,t}^-$ formation can be increased by using a variation method instead of the perturbation one. However, the calculation becomes more complex.

Our model also answer the question why the excess electron of H_2^- does not migrate freely in crystalline H_2 . The excess electron can migrate freely if it is located in the homogeneous (defect free) region of crystalline H_2 . However, since H_2^- is stabilized in a cavity, migration of the excess electron needs the migration of the cavity. Radiation-chemical reactions taking place by γ -irradiation of crystalline H₂ are

$$\begin{aligned} H_{2} + \gamma &\to H_{2}^{+} + e^{-}, \quad H_{2}^{+} + H_{2} \to H_{3}^{+} + H, \\ e^{-} + H_{3}^{+} \to H_{2} + H, \quad e^{-} + \otimes \to e^{-}_{t}, \\ e^{-}_{t} + H_{2} \to H_{2,t}^{-} \end{aligned}$$

where \otimes denotes a vacancy. The stability of thus generated $H_{2,t}^-$ depends on the rigidity of a cavity trapping H_2^- . $H_{2,t}^-$ may dissociates into H_2 and e_t^- if the medium is soft enough for allowing the expansion of the cavity, since the stability of e_t^- increases with increasing cavity radius.

Acknowledgment. This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References and Notes

- (1) Buchelkinov, N. S. Usp. Fiz. Nauk 1958, 65, 351.
- (2) Schulz, G. L. Rev. Mod. Phys. 1973, 45, 423.
- (3) Stephen, M. J.; Auffray, J. P. J. Chem. Phys. 1959, 31, 1329.
- (4) Jefferts, K. B. Phys. Rev. Lett. 1969, 23, 1476.
- (5) Oka, T. Rev. Mod. Phys. 1992, 45, 1141.
- (6) McNab, I. R. Adv. Chem. Phys. 1992, 96, 3702.
- (7) Miyazaki, T.; Yamamoto, K.; Aratono, Y. Chem. Phys. Lett. 1995, 232, 229.
- (8) Kumada, T.; Inagaki, H.; Nagasawa, T.; Aratono, Y.; Miyazaki, T. Chem. Phys. Lett. 1996, 251, 219.
 - (9) Symons, M. C. R. Chem. Phys. Lett. 1995, 247, 607.

(10) Bruna, P. J.; Lushington, G. H.; Grein, F. Chem. Phys. Lett. 1996, 258, 427.

- (11) Kumada, T.; Inagaki, H.; Kitagawa, N.; Komaguchi, K.; Aratono, Y.; Miyazaki, T. J. Phys. Chem. **1997**, 101, 1198.
 - (12) Ichikawa, T.; Yoshida, H. J. Chem. Phys. 1980, 73, 1540.
 - (13) Halpern, B.; Lekner, J.; Rice, S. A. Phys. Rev. 1967, 156, 351.
 - (14) Van der Hart, J. A; Mulder J. Chem. Phys. Lett. 1979, 61, 111.
 - (15) McCurdy, C. W. Phys. Rev. 1982, A25, 2529
- (16) Senekowich, J.; Rosmus, P.; Domcke, W.; Werner, H. J. Chem. Phys. Lett. 1984, 11, 211.
- (17) Sabelli, N. H.; Gislason, E. A. J. Chem. Phys. 1984, 81, 4002.
- (18) Derose, E.; Gislason, E. A.; Sabelli, N. H. J. Chem. Phys. 1985, 82, 4577.
- (19) Roach, A. C.; Kuntz, P. J. J. Chem. Phys. 1986, 84, 822.

(20) Derose, E. F.; Gislason, E. A.; Sabelli, N. H.; Sluis K. M. J. Chem. Phys. **1988**, 88, 4878.

(21) Shalabi, A. S. Mol. Phys. 1995, 85, 1033.

(22) Ab initio MO calculation program, Gaussian 92, Revision F.3: Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian 92*, Revision F.3; Gaussian, Inc.: Pittsburgh, PA, 1992.

(23) Peckeris, C. L. Phys. Rev. 1962, 126, 1470.